

HighPrep™ Viral RNA Kit

OPTIMIZED PROTOCOL FOR SARS-CoV-2 RNA ISOLATION

Manual Revision v1.0 Catalog Nos. HPV-R20, HPV-R96, HPV-R96X4

- Isolation of viral nucleic acids from viral transport media (VTM), plasma, swabs, saliva, whole blood, and other bodily fluids.
- Magnetic beads based chemistry

Contents

Product Description and Process	1
Kit Contents, Storage, Stability	1
Preparation of Reagents	2
Viral RNA - 200 μl protocol	3
Viral RNA - 400 μl protocol	
Troubleshooting guide	
Ordering Information	10

For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice.

MAGBIO GENOMICS, INC. DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL MAGBIO GENOMICS, INC. BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT MAGBIO GENOMICS, INC. IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS

Product Description

The HighPrep™ Viral RNA kit is designed for rapid and reliable isolation of viral nucleic acids from various viral transport media, whole blood, serum, plasma, swabs, saliva, and other bodily fluids. The kit extracts high quality viral RNA that is suitable for direct use in most downstream applications such as amplification and enzymatic reactions. It can be adapted to most major liquid handling workstations in the market.

Process

Samples are lysed in a specially formulated buffer containing detergent. Nucleic acid is bound to the surface of MAG-S1 Particles under proper condition. Proteins and cellular debris are efficiently washed with few wash steps. Pure RNA is then eluted in nuclease-free water or low ionic strength buffer. Purified RNA can be directly used in downstream applications without the need for further purification.

Kit Contents and Storage

HighPrep™ Viral RNA Kit Catalog No.	HPV-R20 (Sample)	HPV-R96	HPV-R96X4	STORAGE
Number of Preps*	20	96	384	
Viral Lysis Buffer	6 ml	30 ml	120 ml	15-25°C
RDW Buffer ¹	6 ml	30 ml	120 ml	15-25°C
Nuclease-Free Water	8 ml	35 ml	140 ml	15-25°C
Pro K Solution ²	230 μΙ	1.1 ml	4.4 ml	2-8°C
NBE ³	180 μΙ	2 ml	8 ml	2-8°C
MAG-S1 Particles	230 μΙ	1.1 ml	4.4 ml	2-8°C
LES I ³	1 ml	5 ml	20 ml	-20°C

¹Ethanol must be added prior to use. See Preparation of Reagents Section.

Stability

All components are stable for 14 months when stored accordingly.

² Pro K Solution comes in a ready to use solution. Pro K is stable for 12 months when stored at 15-25°C. For storage longer than 1 year, store at 2-8°C.

³NBE and LES I come in a ready to use solution and are stable at 2-8°C (30 days). For longer storage, keep at -20°C.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs). MSDS can be downloaded from the "Product Resource" tab when viewing the product kit.

^{*}The number of preps indicated on the table above are based on a 200 µl sample preparation protocol.

Preparation of Reagents

Prepare the following components for each kit before use:

Catalog No.	Component	Add 100% Ethanol	Storage	
HPV-R20	RDW Buffer 4 ml		Room Temp 15-25°C	
Components are stable for 14 months when stored accordingly.				

Catalog No.	Component	Add 100% Ethanol	Storage	
HPV-R96	RDW Buffer	20 ml	Room Temp 15-25°C	
Components are stable for 14 months when stored accordingly.				

Catalog No.	Component	Add 100% Ethanol	Storage	
HPV-R96X4	HPV-R96X4 RDW Buffer 80 ml		Room Temp 15-25°C	
Components are stable for 14 months when stored accordingly.				

Viral RNA - 200 µl sample volume (96 well plate format/single tube) OPTIMIZED PROTOCOL FOR SARS-Cov-2 RNA ISOLATION

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier.

Ethanol (80%)
Isopropanol (100%)
Magnetic separation device for 96 well plate/ 1.5ml - 2ml magnetic separation device
96 well microplates (U or V bottom) or 1.5-2ml microcentrifuge tubes

Things to do before starting

Prepare all r	eagents a	ccordingly	according	to the	instructions	on page 2.

☐ Preparation of Master Mixes

Lysis Master Mix**:

	Volume per reaction		
	1 reaction	100 reactions	
Lysis Buffer (μl)	240	24,000	
Pro K Solution (μl)	10	1,000	
NBE (μl)	8	800	
Total	258 μΙ	25,800 μl	
258 μl per reaction			

^{**}Mix well before use

Binding Master Mix:**

	Volume per reaction		
	1 reaction	100 reactions	
Isopropanol (μl)	280	28,000	
MAG-S1 Particles (μl)	10	1,000	
Total	290 μΙ 29,00		
290 µl per reaction			

^{**}Mix well before use

Manual Protocol

Sample Pretreatment Step: 10 mins reaction time

- 1. Gently swirl LES I container, then pipette 50 µl to each well/tube.
- 2. Add 200 µl of sample to each well/tube. Pipette mix 15 times.
 - A Note: If sample is less than 200 μl, bring volume up to 200 μl with Nuclease-Free Water.
- 3. Incubate for 10 mins at 37°C.

Lysis Step: 7 mins reaction time

- Add 258 μl of Lysis Master mix (previously prepared). Pipette mix 15 times.
- 5. Incubate at 56°C 60°C for 5 min. May use a thermoshaker. If there is none in the lab, make sure to shake the samples once or twice during incubation.
- 6. Let the samples cool to room temperature for 2 mins.

Binding Step: 8 mins reaction time

- 7. Add 290 ul of Binding master Mix (previously prepared). Pipette mix 15 times.
 - \triangle Shake well to resuspend the MAG-S1 Particles before use.
- 8. Let the samples sit at room temperature for 5 min.
- 9. Place the sample plate on the magnetic separation device for 3 min to magnetize the MAG- S1 particles or until the magnetic beads clear from solution.
- 10. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting.

Wash and Beads Drying Steps: 16 mins reaction time

- 11. Remove the plate from the magnetic separation device and
- 12. Add 400 µl of RDW Buffer. Pipette mix 15 times to re-suspend the MAG-S1 Particles until solution is homogeneous. Then place sample back on magnetic rack and wait for 3 mins to magnetize particles. Remove the supernatant.
- 13. Remove the plate/tube from magnetic rack. Then add 500 μ l of 80% ethanol and mix to re-suspend magnetic bead particles. (Make sure solution is homogeneous)
- 14. Place sample back on the magnetic rack and wait for 3 mins to magnetize particles or until the magnetic beads clear from solution.
- 15. Discard supernatant and then repeat steps 13 14 for a 2nd wash.
- 16. Discard the supernatant and air-dry the beads for 7 mins.

Elution Step: 8 mins reaction time

- 17. Remove the plate from the magnetic separation device. Add 30-100 µl of Nuclease-Free Water to each well/tube and pipette mix 15 times to completely re-suspend the MAG-S1 Particles.
 - Note: Complete resuspension of the MAG-S1 Particles is crucial for better yield.
- 18. Incubate at 56°C-60°C for 5 min.
- 19. Place the sample plate back on the magnetic separation device and wait for 3 min or until the magnetic beads clear from solution.
- 20. Transfer the eluate (cleared supernatant containing the RNA) to a new micro-plate for storage. Store RNA at -80°C.

Viral RNA - 400 µl sample volume (96 well plate format/single tube)

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs) from each product supplier.

☐ Ethanol (80%)
□ Isopropanol (100%)
\square Magnetic separation device for 96 well plate/ 1.5ml - 2ml magnetic separation device
☐ 96 well microplates (U or V bottom) or 1.5-2ml microcentrifuge tubes

Things to do before starting

Prepare all reagents accordingly according to the instructions on page	≥ 2.
Preparation of Master Mixes	

Lysis Master Mix**:

	Volume per reaction		
	1 reaction	100 reactions	
Lysis Buffer (μl)	400	40,000	
Pro K Solution (μl)	20	2,000	
NBE (μl)	12	1,200	
Total	432 μΙ	43,200 μl	
432 µl per reaction			

^{**}Mix well before use

Binding Master Mix:**

	Volume per reaction		
	1 reaction	100 reactions	
Isopropanol (μl)	400	40,000	
MAG-S1 Particles (μl)	20	2,000	
Total	420 μΙ	42,000 μΙ	
420 µl per reaction			

^{**}Mix well before use

Manual Protocol

Sample Pretreatment Step: 10 mins reaction time

- 1. Gently swirl LES I container, then pipette 100 µl to each well/tube.
- 2. Add 400 µl of sample to each well/tube. Pipette mix 15 times.
 - 1 Note: If sample is less than 400 μl, bring volume up to 400 μl with Nuclease-Free Water.
- Incubate for 10 mins at 37°C.

Lysis Step: 10 mins reaction time

- 4. Add 432 µl of Lysis Master mix (previously prepared). Pipette mix 15 times.
- 5. Incubate at 56°C 60°C for 5 min. May use a thermoshaker. If there is none in the lab, make sure to shake the samples once or twice during incubation.
- 6. Let the samples cool to room temperature for 5 mins.

Binding Step: 8 mins reaction time

- 7. Add 420 ul of Binding master Mix (previously prepared). Pipette mix 15 times.
 - \triangle Shake well to resuspend the MAG-S1 Particles before use.
- 8. Let the samples sit at room temperature for 5 min.
- 9. Place the sample plate on the magnetic separation device for 3 min to magnetize the MAG- S1 Particles or until the magnetic beads clear from solution.
- 10. With the plate on the magnetic separation device, remove and discard the supernatant by pipetting.

Wash and Beads Drying Steps: 16 mins reaction time

- 11. Remove the plate from the magnetic separation device and
- 12. Add 400 µl of RDW Buffer. Pipette mix 15 times to re-suspend the MAG-S1 Particles until solution is homogeneous. Then place sample back on magnetic rack and wait for 3 mins to magnetize particles. Remove the supernatant.
- 13. Remove the plate/tube from magnetic rack. Then add 500 μ l of 80% ethanol and mix to re-suspend magnetic bead particles. (Make sure solution is homogeneous)
- 14. Place sample back on the magnetic rack and wait for 3 mins to magnetize particles or until the magnetic beads clear from solution.
- 15. Discard supernatant and then repeat steps 13 14 for a 2nd wash.
- 16. Discard the supernatant and air-dry the beads for 7 mins.

Elution Step: 8 mins reaction time

- 17. Remove the plate from the magnetic separation device. Add 30- 00 μl of Nuclease-Free Water to each well/tube and pipette mix 15 times to completely re-suspend the MAG-S1 Particles.
 - ⚠ Note: Complete resuspension of the MAG-S1 Particles is crucial for better yield.
- 18. Incubate at 56°C-60°C for 5 min.
- 19. Place the sample plate back on the magnetic separation device and wait for 3 min or until the magnetic beads clear from solution.
- 20. Transfer the eluate (cleared supernatant containing the RNA) to a new micro-plate for storage. Store RNA at -80°C.

Troubleshooting guide

Please use this guide to troubleshoot any problems that may arise. For further assistance, please contact technical support via:

Phone: 301-302-0144 (in US), outside US, 1-855-262-4246

Email: support@magbiogenomics.com

Symptoms	Possible Causes	Comments	
	Incomplete resuspension of MAG-S1 Particles.	Resuspend MAG-S1 Particles by vortexing vigorously before use.	
Low RNA Yield	Loss of MAG-S1 Particles during operation.	Avoid disturbing the MAG-S1 Particles during aspiration of supernatant.	
	Ethanol is not added into RDW Buffer.	Add absolute 100% Ethanol to RDW Buffer (see page 2 for instructions).	
	Inefficient cell lysis.	Double the volume of Pro K Solution and incubate longer.	
MAG-S1 Particles do not completely clear from solution	Too short of magnetizing time.	Increase collection time on the magnet. Make sure the solution is completely clear before discarding the supernatant.	
	Insufficient RNA in starting material	Use more starting material.	
Problems in downstream applications	Ethanol carry-over.	Dry the MAG-S1 Particles completely before elution. Use a fine pipette tip to pipette out any residual liquid during the drying of beads.	
Carryover of The eluate has particles and is not fully clear.		Increase magnetization time. If small amount of carryover, place eluted sample on a magnetic separtion device and perform an additional 5 min magnetization.	

Ordering Information

Product Description	Catalog No.	Preps
HighPrep™ Viral RNA Kit (96 preps)	HPV-R96	96
HighPrep™ Viral RNA Kit (384 preps)	HPV-R96X4	384

Related Products

Next Gen library prep clean-up system

Product Description	Catalog No.
HlghPrep™ RNA Elite (5 mL)	RC-90005
HlghPrep™ RNA Elite (50 mL)	RC-90050
HlghPrep™ RNA Elite (250 mL)	RC-90250
HlghPrep™ RNA Elite (500 mL)	RC-90500

Magnetic Separation Devices

Product Description	Catalog No.
Handheld Magnetic Separation Device (96 well microplate format)	MYMAG-96
Magnetic Separation Device (96 well ring magnet plate)	MYMAG-96X
MagStrip magnetic stand (1.5 mL x 12)	MBMS-12
15ml and 50ml magnetic stand combo. (3x15ml and 3x50ml)	MBMS-31550

www.magbiogenomics.com

Biozym Scientific GmbH Tel.: 05152 / 9020, Fax: 05152 / 2070 Mail: support@biozym.com

